Turing株式会社 全ての求人一覧b. MLOps, Webソフトウェアエンジニア の求人一覧
Turing株式会社 全ての求人一覧

3010_クラウドエンジニア / Cloud Engineer(自動運転MLOps基盤開発)

◆本求人は、クラウドへの深い理解を持ち、技術選定レベルから開発した経験を持つ方やSRE、データエンジニアの方を対象としています◆ チューリングでは、車載カメラの映像を入力に車の制御を行う「End-to-End の自動運転MLモデル」の開発を行っています。 モデルの開発には Data-Centric AI と呼ばれるアプローチを取っていますが、実際に学習に用いるデータの裏側には膨大なデータが存在します。ペタバイト規模のデータを効率よく扱うためにはさまざまなツールやサービスの実装が求められ、クラウドの特性を活かすことが必要不可欠です。 一方で、テクノロジーの深化で優秀なソフトウェアエンジニアであってもクラウドを十二分に活用することが難しくなってきています。このポジションではチームがクラウドの特性を有効活用しモデル開発を200%加速させることを期待します。 【業務内容】 ・クラウド上の機械学習基盤の設計、構築、運用 ・データ基盤の設計、構築、運用 ・データ基盤を活用した社内向けツールの実装 ・開発支援ツールの設計、構築、運用 ・社内のソフトウェアエンジニアの実装サポート・エネイブルメント 【なぜクラウドに精通した人材が必要か?】 チューリングが構築するデータ基盤は、データ量の多さ、モダリティの多様性の観点で非常に複雑なものになっています。また、国内外でユースケースは少なく、初めての問題や課題を解いていかなければなりません。 強いMLエンジニアとソフトウェアが集まり、日々開発に取り組んでいますが、クラウド技術の深化により彼らがクラウド技術を深く広くキャッチアップするのが難しくなってきます。そのためクラウドインフラのさまざまなユースケースや技術に精通した人材が必要なのです。 【クラウドエンジニアとして以下のような経験ができます】 ・S3やLambdaのrequest limitを考慮した新規機能導入検討 ・Sparkを用いた分散処理基盤の構築 ・プライベートクラウドの構築(IaaS/PaaS/SaaS)

3011_ソフトウェアエンジニア / Software Engineer(自動運転MLOps基盤開発)

◆本求人は、技術負債・CI/CDなどの思想や経験を持つソフトウェアエンジニアを対象としています/大規模データ基盤・MLOps構築がミッションです◆ チューリングでは、車載カメラの映像を入力に車の制御を行う「End-to-Endの自動運転MLモデル」の開発を行っています。 モデルの開発には Data-Centric AI と呼ばれるアプローチを取っていますが、継続的なデータおよびモデルの改善には高度なソフトウェアエンジニアリングやクラウドを活用した自動化が必要不可欠です。E2E自動運転MLモデルの開発効率を圧倒的に向上させるソフトウェアエンジニアを募集します。 【業務内容】 ・機械学習エンジニアと協力し、データやモデルの継続的な改善 ・クラウド等を活用した処理の自動化や、内部ツール・サービスの実装 ・システムアーキテクチャの設計 【SaaSやWeb開発とは異なる仕事の面白さ】 われわれが扱うテーマや自動運転です。開発したソフトウェアが車に搭載され、公道を走ります。また、E2Eのアプローチで自動運転モデルを開発するのは日本でチューリングだけです。この開発を行える唯一無二の環境となっています。 E2Eの自動運転は通常の機械学習モデルとは違う難しさがあります。それは、データ多様性(モダリティ)、データ量、車両への搭載の大きく3つです。 ・データ多様性(モダリティ)について テーブルデータ・点群データ、画像データなどさまざまなモダリティのデータを扱います。これらの異なるデバイスからデータを収集するため、デバイス間の誤差や時刻同期 のタイミングの違いを考慮してデータセットを作っていかなけばなりません。これにより品質の高いデータを多く、適切に集め管理する難易度が高まっています。 ・データ量について われわれの開発では、数PBのデータをクラウドで扱う必要がある ・車両への搭載について E2E自動運転開発は1チームで行っています。MLOpsを担うエンジニアも実際にモデルが搭載された車に乗ります。モデルが現実世界でどう振る舞うかを体験できます。自身の開発を五感で味わえる環境です。 強いMLエンジニアとソフトウェアが組むことで自動運転は実現していきます。これまでのソフトウェア開発経験を活かして人類のグランドチャレンジに一緒に挑みましょう。 【以下のような経験をもったソフトウェアエンジニアが活躍しています】 - AI学習アプリのバックエンド開発 - ETL基盤やワークフローエンジンの開発運用 - Hadoopクラスタの構築経験 - ソーシャルゲーム、スマホゲーム開発 - 動画配信サービスの解析、推薦基盤開発

3012_ソフトウェアエンジニア / Software Engineer(自動運転VLAモデル開発)

◆本求人は、機械学習・自動運転・コンピュータビジョンのいずれかの領域で専門性を持つMLエンジニアや、大規模なMLOps・データ基盤開発に取り組んできたソフトウェアエンジニア、あるいはロボティクス領域でMLやソフトウェアエンジニアリングに取り組んできた方を対象としています◆ チューリングでは、車載カメラの映像を入力に車の制御を行う「End-to-endの自動運転モデル」の開発を行っています。チューリングのミッションは、完全自動運転レベルの自動運転システムの開発を行うことです。大きく2つの方向性でわれわれは開発を進めています。エキスパートドライバーのデータを模倣学習させ、数ミリオンほどのニューラルネットワークで多様なシーンを学習させるものと、Vision-Language-Actionモデル(VLAモデル)をはじめとした基盤モデルを車両で動かし、さまざまなシーンを判断させるものです。 VLAモデルを使った自動運転は世界レベルで見てもまだ知見が少なく、最新の論文や開発事例を参考にし、探索的に取り組んでいかねばなりません。そのためには機械学習の知見だけではなく、さまざまなエンジニアリング要素を駆使してプロジェクトを進めていく必要があります。 今回の求人ではそういった挑戦的な取り組みを進めるメンバーを募集しています。基盤モデルの学習パイプライン構築や、モデルの量子化・最適化などさまざまなレイヤーで開発イシューがあります。 【業務内容】 ※下記のうちの全てを担当するわけではなく、自身の強みを活かしたドメインで開発を進めつつ、他領域にも染み出しながら開発を進めていただきます ・データキャリブレーションや異なるセンサデバイス間の座標変換 ・データセットの作成・改善 ・論文や既存実装の調査・再現・実装 ・自社データセットを利用した既存実装の評価 ・モデル量子化・最適化 ・実車でのモデル評価・実験管理 ・自動運転VLAモデルの実装 ・オートラベリングの実装 【Embodied AIというテーマの最前線を楽しむ】 AIに身体性を持たせ、物理空間の中で価値を発揮する。そういったテーマにおいて自動運転はまさに人類がいま取り組んでいるものです。すでに社内で進んでいるプロジェクトのナレッジを活かしつつも、独自のMLパイプラインを構築していかなければなりません。レファレンスがほとんどない領域で開発を推進していただける方を探しています。 【自分のつくったモデルを実車で試して改善していく】 「データセットやモデルを作る→走行実験→実験ログ解析実験→モデルの管理」という流れで自動運転AIを進化させていきます。自身のつくったモデルを五感で捉えながら改善サイクルを回していきます。机上だけでなく、現実世界からのフィードバックを開発に活かしてください。 【こんな人が活躍しています】 - 研究機関出身の自然言語処理リサーチャー - システム開発会社でのシステムエンジニア/データサイエンティスト - 広告系メガベンチャー出身の機械学習/ソフトウェアエンジニア

3050_シミュレーションエンジニア / Simulation Engineer(End-to-End自動運転モデル開発)

◆本求人は、シミュレーション領域で専門性を持つエンジニアを対象としています◆ チューリングは完全自動運転の実現を目指しているディープテックスタートアップです。 当社では、End-to-End 自動運転モデルの研究開発を加速させるために、次世代のシミュレーション技術の構築に取り組んでいます。具体的には、評価・学習に使用する 3D Gaussian Splatting ベースのシミュレータ, 大規模分散学習基盤, 制御システム(MPC等)を組み合わせることで、実車実験に依存しない効率的でロバストな自動運転システム開発を推進しています。 本ポジションのシミュレーションエンジニアは、その基盤となるクローズドループシミュレータの設計・開発をリードし、MLエンジニアと連携しながら、自動運転技術の進化を加速させる役割を担います。 ■業務内容 - 3DGSベースのクローズドループシミュレータ開発 - End-to-End自動運転モデル開発支援 - 分散学習基盤との統合 【シミュレータ開発の目的】 大規模に生成された3DGSシーンを活用し、End-to-Endモデルの学習・評価を可能にする高精度シミュレーション環境を構築していきます。制御レイヤーや物理シミュレーションを統合し、実車実験に依存せず制御アルゴリズム探索を行える環境を実現しようと考えています 【モデル開発支援とは?】 強化学習や模倣学習に適したE2Eモデルの事前学習をサポートしていきます。また、制御レイヤーを含めた効率的なE2Eモデル探索を推進をしていただきます。 【分散学習基盤との統合について】 われわれは多様な交通シナリオや物理特性のランダム化に対応した堅牢なモデル学習を支えるシミュレーション環境を拡張していきます。 シミュレーション環境を全社で活用可能な共通基盤にするには、現状のモデル開発のデータパイプライン環境や学習基盤環境とシームレスに接続していく必要があります。 単にシミュレーターを作るのではなく、共通基盤としての構築を目指し、全社のモデル開発を支援していきます。